多孔钛合金表面处理及生物学性能研究Study on surface treatment and biological properties of porous titanium alloy by laser additive manufacturing
路易,罗乙娲,焦树强
摘要(Abstract):
钛合金具有硬度高,耐磨损,生物相容性好等优点,在骨科植入物和骨组织修复领域的应用越来越广泛。但是,未经处理的钛合金表面通常表现出较差的细胞黏附性,不利于骨整合。为了激发钛合金材料的生物活性,需要对其表面进行改性处理。本研究采用碱热处理(AHT)的方式对由激光粉末床熔合技术(LPBF)制备的多孔Ti6Al4V合金材料进行表面改性,考察了碱溶液浓度和处理时间对钛合金材料表面形貌的影响,并对表面改性后的试样进行了生物相容性测试。结果表明,试样经过酸洗预处理后,在60℃恒温条件下浸泡于7 mol/L NaOH溶液中并保温1 h,经过高温烧结得到的试样表面形成了形态良好、分布均匀的纳米网状钛酸钠涂层,再经过模拟体液浸泡培养10 d,形成磷灰石涂层。采用直接接触的方式将骨髓间充质干细胞(hBMSC)接种在试样上,培养48 h,测得碱热处理且经过模拟体液浸泡试样的细胞相对活性明显高于未经处理的试样。
关键词(KeyWords): 钛合金;碱热处理;生物活性
基金项目(Foundation): 国家自然科学基金青年基金项目(52004026);; 中央高校基本科研业务费项目(FRF-TP-22-012A1)
作者(Author): 路易,罗乙娲,焦树强
DOI: 10.19864/j.cnki.jxye.2024.02.007
参考文献(References):
- [1] LIMMAHAKHUN S, OLOYEDE A, SITTHISERIPRATIP K, et al. 3D-printed cellular structures for bone biomimetic implants[J].Additive Manufacturing, 2017, 15:93-101.
- [2] WANG F Z, ZHAO J, ZHU N B. Constitutive equations and ANN approach to predict the flow stress of Ti-6Al-4V alloy based on ABI tests[J]. Journal of Materials Engineering and Performance,2016, 25(11):4875-4884.
- [3] DEPBOYLU F N, YASA E, POYRAZ?, et al. Titanium based bone implants production using laser powder bed fusion technology[J]. Journal of Materials Research and Technology,2022, 17:1408-1426.
- [4] UMEHARA H, KOBATAKE R, DOI K, et al. Histological and bone morphometric evaluation of osseointegration aspects by alkali hydrothermally-treated implants[J]. Applied Sciences, 2018,8(4):635.
- [5] LE GUéHENNEC L, SOUEIDAN A, LAYROLLE P, et al.Surface treatments of titanium dental implants for rapid osseointegration[J]. Dental Materials, 2007, 23(7):844-854.
- [6] IWAYA Y, MACHIGASHIRA M, KANBARA K, et al. Surface properties and biocompatibility of acid-etched titanium[J]. Dental Materials Journal, 2008, 27(3):415-421.
- [7] HAMOUDA IBRAHIM M, ENAN ENAS T, AL-WAKEEL ESSAM E, et al. Alkali and heat treatment of titanium implant material for bioactivity[J]. The International Journal of Oral&Maxillofacial Implants, 2012, 27(4):776-784.
- [8] SHI X L, NAKAGAWA M, KAWACHI G, et al. Surface modification of titanium by hydrothermal treatment in Mgcontaining solution and early osteoblast responses[J]. Journal of Materials Science:Materials in Medicine, 2012, 23(5):1281-1290.
- [9] JEMAT A, GHAZALI M J, RAZALI M, et al. Surface modifications and their effects on titanium dental implants[J].BioMed Research International, 2015, 2015:791725.
- [10] OFFERMANNS V, ANDERSEN O Z, RIEDE G, et al. Effect of strontium surface-functionalized implants on early and late osseointegration:a histological, spectrometric and tomographic evaluation[J]. Acta Biomaterialia, 2018, 69:385-394.
- [11]王晓花,李金山,胡锐,等.多孔钛表面无裂纹生物活化层的制备及表征[J].稀有金属材料与工程, 2014, 43(6):1392-1396.
- [12] KOKUBO T, MIYAJI F, KIM H M, et al. Spontaneous formation of bonelike apatite layer on chemically treated titanium metals[J]. Journal of the American Ceramic Society,1996, 79(4):1127-1129.
- [13] BAN S, IWAYA Y, KONO H, et al. Surface modification of titanium by etching in concentrated sulfuric acid[J]. Dental Materials, 2006, 22(12):1115-1120.
- [14] KONO H, MIYAMOTO M, BAN S. Bioactive apatite coating on titanium using an alternate soaking process[J]. Dental Materials Journal, 2007, 26(2):186-193.
- [15] HO W F, LAI C H, HSU H C, et al. Surface modification of a low-modulus Ti-7.5Mo alloy treated with aqueous NaOH[J].Surface and Coatings Technology, 2009, 203(20/21):3142-3150.
- [16] WANG H, SU K X, SU L Z, et al. The effect of 3D-printed Ti6Al4V scaffolds with various macropore structures on osteointegration and osteogenesis:a biomechanical evaluation[J].Journal of the Mechanical Behavior of Biomedical Materials,2018, 88:488-496.
- [17] WANG Y, ZENG Q F, DU X K, et al. The structural, mechanical and electronic properties of novel superhard carbon allotropes:ab initio study[J]. Materials Today Communications, 2021, 29:102980.
- [18] SHAHRIYARI F, RAZAGHIAN A, TAGHIABADI R, et al.Effect of friction hardening pre-treatment on increasing cytocompatibility of alkali heat-treated Ti-6Al-4V alloy[J].Surface and Coatings Technology, 2018, 353:148-157.