304不锈钢氩氧脱碳精炼过程中炉渣成分预测模型Prediction model for slag composition in argon oxygen decarbonization refining process of 304 stainless steel
林文志,李晶,史成斌,蔡俊
摘要(Abstract):
针对304不锈钢氩氧脱碳(Argon-Oxygen Decarburization,AOD)精炼过程中存在炉渣成分难以测量等问题,本研究综合考虑了顶枪吹氧、供气比例变化、物料熔化速度以及初始渣量对渣-钢反应和精炼炉渣成分的影响,建立了炉渣成分预测模型,并用于计算精炼过程中的炉渣和钢液成分变化。此模型计算的渣成分与钢液硫含量与实测值吻合较好,AOD精炼终点渣中Si O_2含量平均偏差为1.434%,Ca O含量平均偏差为1.848%,Cr_2O_3含量平均偏差为0.080%,Mn O含量平均偏差为0.016%,钢液终点S含量平均偏差为0.002%。
关键词(KeyWords): 氩氧脱碳;304不锈钢;炉渣成分;预测模型
基金项目(Foundation):
作者(Author): 林文志,李晶,史成斌,蔡俊
DOI: 10.19864/j.cnki.jxye.2024.02.004
参考文献(References):
- [1]陈林根,夏少军,谢志辉,等.钢铁冶金过程动态数学模型的研究进展[J].热科学与技术, 2014, 13(2):95-125.
- [2] WEI J H, ZHU D P. Mathematical modeling of the argon-oxygen decarburization refining process of stainless steel:Part I.Mathematical model of the process[J]. Metallurgical and Materials Transactions B, 2002, 33:111-119.
- [3]李青. AOD转炉冶炼不锈钢过程的动态模型及应用Ⅰ——冶炼过程动态模型[C]//技术创新与循环经济——第二届宝钢学术年会论文集. 2006:328-332.
- [4]陈建斌,陈兆平,姜周华,等.不锈钢AOD转炉过程数学模拟Ⅰ:过程数学模型[C]//中国金属学会.2005中国钢铁年会论文集.2005:300-305.
- [5]姚吕金,谭建兴,张海飞,等.关于45 t AOD脱碳过程的探讨[J].山西冶金, 2019, 42(6):39-40, 70.
- [6]冯文甫,刘学强,赵世杰,等. CO二次燃烧技术在AOD炉应用的研究与工业实践[J].炼钢, 2020, 36(5):32-36.
- [7]易天龙,吴华杰,孙悦,等. AOD精炼双相不锈钢2101去碳保铬研究[J].工程科学学报, 2020, 42(增刊1):89-94.
- [8]卢嘉枫,李晶,史成斌,等. 304不锈钢AOD冶炼过程脱碳保铬和铬烧损的研究[J].江西冶金, 2021, 41(1):12-18.
- [9] VISURI V V, J?RVINEN M, SULASALMI P, et al. A mathematical model for the reduction stage of the AOD process.Part I:derivation of the model[J]. ISIJ International, 2013, 53(4):603-612.
- [10] VISURI V V, J?RVINEN M, SAVOLAINEN J, et al. A mathematical model for the reduction stage of the AOD process.PartⅡ:model validation and results[J]. ISIJ International, 2013,53(4):613-621.
- [11] DíAZ M C, KOMAROV S V, SANO M, et al. Bubble behaviour and absorption rate in gas injection through rotary lances[J]. ISIJ International, 1997, 37(1):1-8.
- [12]滕晓峰,朱苗勇,陈兆平,等.宝钢AOD-VOD不锈钢冶炼过程的数学模拟Ⅰ:数学模型[C]//中国金属学会2003中国钢铁年会论文集, 2003:718-724.
- [13] MAISUI A, NABESHIMA S, MATSUNO H, et al. Kinetics behavior of iron oxide formation under the condition of oxygen top blowing for dephosphorization of hot metal in the basic oxygen furnace[J]. Tetsu to Hagane Journal of the Iron&Steel Institute of Japan, 2009, 95(3):207-216.
- [14] MARTINSSON J, GLASER B, SICHEN D, et al. Lime dissolution in foaming BOF slag[J]. Metallurgical and Materials Transactions B, 2018, 49:3164-3170.
- [15] CHEREMISINA E, SCHENK J, NOCKE L, et al. Kinetics and mechanisms of dolime dissolution in steelmaking slag[J].Metallurgical and Materials Transactions B, 2019, 50:1269-1276.
- [16] KADROLKAR A, ANDERSSON N?I, DOGAN N, et al. A dynamic flux dissolution model for oxygen steelmaking[J].Metallurgical and Materials Transactions B, 2017, 48:99-112.
- [17] MARUOKA N, ISHIKAWA A, SHIBATA H, et al. Dissolution rate of various limes into steelmaking slag[J]. High Temperature Materials and Processes, 2013, 32(1):15-24.
- [18]郭靖,陈兴润,韩少伟,等.“两次造渣法”冶炼不锈钢超薄带理论和工业应用[J].钢铁, 2021, 56(12):43-51.
- [19]韩少伟,郭靖,陈兴润,等.低碱度渣冶炼304不锈钢脱硫热力学和工业试验[J].钢铁, 2018, 53(6):47-52.